
How-To: Create PHP CRUD Step-by-Step
Authentication and Membership

Introduction

Interested in creating your own website? Ever wondered how cool it is to have a website that has a

log-in/log-out functionality? Want to learn how to Create, Read, Update or Delete (CRUD) records in

a database? Have you lost track on your previous tutorials? Well, I'm going to teach you how to

create one from scratch where in you will know every single details on how the code works. If you are

new to back-end web development, this tutorial is for you. We will explain everything in detail so

that you won't have to research some particular methods being used. We won't be using any

frameworks to keep things simple. Also, we won't be focusing on the websites design since where

after the functionalities though, it's easy to implement the design. What will be doing is a

simple item list when the users is logged in.

Pre-requisites

In this tutorial, we will be using some languages that will enhance our development. If you really

don't know any of the things we will mention, it's ok. Just try to go with the flow. It's just easy to

comprehend them since I'm not into using advanced methods for this one. Of course , since this is

creating a back-end service for a website, you must know at least the very HTML/CSS - Off course

this will never get off the list when it comes to web development. Why did I even bother place this?

LOL.

1. JavaScript - For a redirecting script. No jQuery needed for now

2. mySQL - the most basic language for querying. We will be using this for our CRUD (Create,

Read, Update, Delete) functionalities.

For the software, you will be needing the following:

1. Text Editor - Sublime Text/Notepad++ will do. This will serve as our coding environment.

2. XAMPP - This will be our web server. This is where we will be saving our website files and

save our data to the database.

3. Web Browser - You can use any browser for as long as it doesn't eat much of your RAM.

Make sure to have those three installed. Do not proceed if you are not done installing them. I already

provided a hyperlink to make things faster.

For our agenda in this topic:

http://www.sublimetext.com/2
http://notepad-plus-plus.org/download/v6.5.3.html
http://www.apachefriends.org/en/xampp-windows.html

1. Utilize CRUD statements in SQL - Create, Read, Update and Delete records in a database.

2. Simple authentication and security - Logging in and out, handling unauthorized users and

restricting access.

3. Simple time and date manipulation - Displaying time and date postings and monitoring

your posts.

4. Displaying public and private data - Simply display information for logged-in users only

and for the public.

5. De-briefing and Summary - Final output and some notes. FAQs are also place here.

Topic Contents

Note: In case you stopped on a certain part or want to search quickly, you can simply resume by

pressing Ctrl + f and look for the number where you last stopped.

1. Setting up your server

2. Creating the public HTML Pages

3. Creating the database and its tables

4. Adding users to the database

5. User log-in: Authentication

6. Setting up the home page for Logged-in users and Logging-out

7. Testing Page Security

8. Adding data to the list - User Access Only

9. Displaying data in the home page

10. Editing Data

11. Deleting data

12. Displaying public data

13. De-briefing and Summary

Make sure you follow chronologically. Don't proceed without accomplishing the previous part, not

unless you know the code.

Some Reminders Before We Start

Note: If the picture seems unclear/blurry, you can click it to view it in its larger size. Also, pardon me

for using images to display the codes rather than showing you a raw text because it can't format

properly on my WordPress subscription but don't worry, I'll be uploading the finished product at the

end of this tutorial to double-check your work.

1) Setting Up Your Server

Now that you are all set and go, as the basics of programming goes, let's start by creating a simple

shoutout of "hello world" in our server.

First of, go to the directory where you installed your XAMPP (Commonly in C:\xampp). From there,

go to the htdocs folder (Commonly in C:\xampp\htdocs) and create a folder named "MyFirstWebsite".

From that part, you have now created a Local URL for your website. That folder will be used to supply

in all website files (.html, .php, .css, .js, etc.). Open up your text editor, Notepad++ or any others can

be used to edit app code

What we will do is a basic HTML page and display "hello world" from the server using a basic PHP

syntax. We then type the following syntax:

PHP
Copy Code

<html>
 <head>
 <title>My first PHP Website</title>
 </head>
 <body>
 <?php
 echo "<p>Hello World!</p>";
 ?>
 </body>
</html>

Save the file to the "MyFirstWebSite" Folder and name it as "index.php". (Directory as seen on the top

part of the image.)

Now that you have the file. Let's now open the XAMPP control panel. In case it doesn't appear on

your desktop, it is located in your XAMPP folder as seen in the image:

Now that it's there, run your Apache and mySQL by clicking the "Start" button on the actions

column. You should see a random PID(s) and the default port number. Apache is the name of our

web server wherein it will handle all the files as well as serve as the communication to the web

browser and MySQL is our database which will store all of our information.

Open your web browser and in the address bar, type localhost. You should see the menu of your

XAMPP.

If it's the first time you run it, it will ask what language would you prefer, just simply pick and it will

lead you to the menu. If you will notice the directory is localhost/xampp, it's where the default page

leads you even if you type in localhost.

http://xtiology.files.wordpress.com/2014/03/untitled75.jpg
http://xtiology.files.wordpress.com/2014/03/untitled2.jpg

If that appears, then it means that your XAMPP server is now running. Now let's try running the

website you just placed. Try typing localhost/MyFirstWebsite. It should be the same as the picture

below.

If you will notice that the URL is MyFirstWebsite, it is derived from the htdocs folder and it

automatically reads files that are named "index"(Be it index.html, index.aspx, etc.), which serve as the

default page. Typing localhost/MyfirstWebsite/index.php is just the same. You can also create your

custom name for the URL by simply renaming the folder but let's just stick to MyFirstWebsite.

Note: If you don't have a file named index and you entered the URL, you will receive an error 404 for

not having the file on the server. If you do have different files that are not named index.<extention>,

you have to specify the specific file name. Example: localhost/MyfirstWebsite/page.php.

2) Creating the Public HTML Pages

Next, let's re-modify our website and add a registration link where our users can register as well as a

Log-in page right after getting registered. Let's modify our home page with the following code:

index.php

PHP
Copy Code

<html>
 <head>
 <title>My first PHP Website</title>
 </head>
 <body>
 <?php
 echo "<p>Hello World!</p>";
 ?>
 Click here to login
 Click here to register
 </body>
</html>

As you can see, we only added two links which are for the Login and register. Let's create the

registration page first.

register.php

PHP
Copy Code

<html>
 <head>
 <title>My first PHP Website</title>

 </head>
 <body>
 <h2>Registration Page</h2>
 Click here to go back

 <form action="register.php" method="POST">
 Enter Username: <input type="text"
 name="username" required="required" />

 Enter password: <input type="password"
 name="password" required="required" />

 <input type="submit" value="Register"/>
 </form>
 </body>
</html>

As you can see, it's just a basic form where the user can input his/her credentials. Now for the login

page:

Hint: Just copy-paste the same code to make things faster.

login.php

PHP
Copy Code

<html>
 <head>
 <title>My first PHP Website</title>
 </head>
 <body>
 <h2>Login Page</h2>
 Click here to go back

 <form action="checklogin.php" method="POST">
 Enter Username: <input type="text"
 name="username" required="required" />

 Enter password: <input type="password"
 name="password" required="required" />

 <input type="submit" value="Login"/>
 </form>

 </body>
</html>

Basically, it's just the same code as from the register.php but the changes made were the ones

underlined.

Click here for the complete login.php code.

Try running localhost/MyFirstWebsite again and your pages should look like this:

index.php

register.php

3) Creating the Database and Its Tables

Now that we have our basic page for the public. Let's proceed to the database. First,

type localhost/phpmyadmin. This will lead you to the phpmyadmin homepage:

localhost/phpmyadmin

https://github.com/xtianxchan/MyFirstWebsite/blob/master/login.php

From there, go to the Databases tab located on top, then from the text box in the middle,

type first_db then click on create. Just leave the Collation as is.

You have just successfully created your first database. Now from there, let's create a table wherein

we can register our users and display information. First, click on first_db located on the left side

and create a table named users with 3 columns, then click on Go.

For the table's structure, make sure to have the following fields, then click on save:

• Format: Column Name - Type - Length - Null Property - Other Properties

• id - INT - N/A - Not Null - Auto Increment

• username - varchar - 50 - Not null

• password - varchar - 50 - Not null

Leave everything by default if not specified.

Note: You need to scroll right for the auto_increment. I just edited the picture to fit the A_I field.

Next, create another table named list with 7 columns and for the table's structure:

• id - INT - N/A - Not Null - Auto Increment

• details - text - Not null

• date_posted - varchar - 30 - Not null

• time_posted - Time - Not null

• date_edited - varchar - 30 - Not null

• time_edited - Time - Not null

• public - varchar - 5 - Not null

4) Adding Users to the Database

Now that we have our tables. Let's move on to the fun part, getting your registration page into

action. From your registration.php, add the following below the html codes:

register.php

PHP
Copy Code

<html>
 <head>

 <title>My first PHP Website</title>
 </head>
 <body>
 <h2>Registration Page</h2>
 Click here to go back

 <form action="checklogin.php" method="POST">
 Enter Username: <input type="text"
 name="username" required="required" />

 Enter password: <input type="password"
 name="password" required="required" />

 <input type="submit" value="Register"/>
 </form>
 </body>
</html>

<?php
if($_SERVER["REQUEST METHOD"] == "POST"){
 $username = mysql_real_escape_string($_POST['username']);
 $password = mysql_real_escape_string($_POST['password']);

 echo "Username entered is: ". $username . "
";
 echo "Password entered is: ". $password;
}
?>

Here's the explanation to the code:

• $_SERVER["REQUEST_METHOD"] == "POST" - checks if the form has received

a POST method when the submit button has been clicked. The POST method is created in

the html from the method="POST". Click here for the form method reference.

• $_POST[''] - gets the name coming from a POST method. This just simply gets the input

based on the name from the form. In our case, it's username and password.

• mysql_real_escape_string() - encapsulates the input into a string to prevent inputs

from SQL Injections. This ensures that your strings don't escape from unnecessary

characters. Click here to learn more about SQL Injections.

Now try to go to your register.php and try to input anything then click on "Register." In my case, I

placed in the username xtian and password as 123456. It should display the inputs below. Here's my

sample:

http://www.w3schools.com/tags/att_form_method.asp
http://technet.microsoft.com/en-us/library/ms161953%28v=sql.105%29.aspx
http://xtiology.files.wordpress.com/2014/03/untitled19.jpg

On this part, you should have understood how to get input from the form. Now to add it to the

database. On your register.php, add the following code:

register.php

PHP
Shrink ▲ Copy Code

<html>
 <head>
 <title>My first PHP Website</title>
 </head>
 <body>
 <h2>Registration Page</h2>
 Click here to go back

 <form action="register.php" method="post">
 Enter Username: <input type="text"
 name="username" required="required" />

 Enter Password: <input type="password"
 name="password" required="required" />

 <input type="submit" value="Register"/>
 </form>
 </body>
</html>

<?php
if($_SERVER["REQUEST_METHOD"] == "POST"){
 $username = mysql_real_escape_string($_POST['username']);
 $password = mysql_real_escape_string($_POST['password']);
 $bool = true;

 mysql_connect("localhost", "root","") or die(mysql_error()); //Connect to
server
 mysql_select_db("first_db") or due("Cannot connect to database"); //Connect to
database
 $query = mysql_query("Select * from users"); //Query the users table
 while($row = mysql_fetch_array($query)) //display all rows from query
 {
 $table_users == $row['username']; // the first username row
 // is passed on to $table_users,
 // and so on until the query is finished
 if($username == $table_users) // checks if there are any matching fields
 {
 $bool = false; // sets bool to false
 Print '<script>alert("Username has been taken!");</script>';
//Prompts the user
 Print
'<script>window.location.assign("register.php");</script>";//redirects to

//register.php
 }
 }

 if($bool) // checks if bool is true
 {
 mysql_query("INSERT INTO users (username, password) _
 VALUES ('$username', 'password')"); // inserts value into table
users
 Print '<script>alert("Successfully Registered!");</script>'; // Prompts
the user
 Print '<script>window.location.assign("register.php");</script>'; //
redirects to
 //
register.php
 }
}
?>

Click here for the complete register.php file

Here are the explanations to the code:

• mysql_connect("Server name","Server Username","Server Password") - The

syntax used to connect to our XAMPP server. localhost or 127.0.0.1 is the name of the

server. The default username is root and no password for default.

• mysql_select_db("database name") - Selects the database to be used.

• or die('Message') - Displays the error message if the condition wasn't met.

https://github.com/xtianxchan/MyFirstWebsite/blob/master/register.php

• mysql_query('sql query') - does the SQL queries. Click here for some SQL query

samples. The again, I'm not here to discuss about mySQL.

• mysql_fetch_array('query') - fetches all queries in the table to display or manipulate

data. It is placed in a while loop so that it would query all rows. Take note that only 1 row is

queried per loop that's why a while loop is necessary.

• $row['row name'] - the value of the column in the current query. It is represented as an

array. In our case, $row is the name of the variable for our row in the loop.

Try the inputs that you have made earlier and see what happens. It should prompt that you have

successfully registered. Try going to phpmyadmin and see your users table:

Congratulations! Now you know how to add data into the database with data validations.

5) User Log-in: Authentication

Now for the login page. Let's create a new file called checklogin.php. The reason is going back to

our login.php, our form has an action called "checklogin.php", particularly <form action =
"checklogin.php" method= "POST">. If you will notice on the register.php, it's also

on register.php because the back-end is done on the same file as well.

Let's now code the checklogin.php with the following syntax:

checklogin.php

http://www.w3schools.com/sql/default.asp

PHP
Shrink ▲ Copy Code

<?php
 session_start();
 $username = mysql_real_escape_string($_POST['username']);
 $password = mysql_real_escape_string($_POST['password']);
 $bool = true;

 mysql_connect("localhost", "root", "") or die (mysql_error()); //Connect to
server
 mysql_select_db("first_db") or die ("Cannot connect to database"); //Connect to
database
 $query = mysql_query("Select * from users WHERE username='$username'"); // Query
the
 // users
table
 $exists = mysql_num_rows($query); //Checks if username exists
 $table_users = "":
 $table_password = "";
 if($exists > 0) //IF there are no returning rows or no existing username
 {
 while($row = mysql_fetch_assoc($query)) // display all rows from query
 {
 $table_users = $row['username']; // the first username row is
 // passed on to $table_users,
 // and so on until the query is
finished
 $table_password = $row['password']; // the first password row is passed on
 // to $table_password, and so on
 // until the query is finished

 }
 if(($username == $table_users) && ($password == $table_password)) // checks if
there
 // are any matching
fields
 {
 if($password == $table_password)
 {
 $_SESSION['user'] = $username; // set the username in a session.
 // This serves as a global variable
 header("location: home.php"); // redirects the user to the
authenticated
 // home page
 }
 }
 else
 {
 Print '<script>alert("Incorrect Password!");</script>'; // Prompts the
user
 Print '<script>window.location.assign("login.php");</script>'; // redirects
to login.php
 }
 }
 else
 {
 Print '<script>alert("Incorrect username!");</script>'; // Prompts the
user
 Print '<script>window.location.assign("login.php");</script>'; // redirects
to login.php
 }
?>

Click here for the complete checklogin.php code

Here's the explanation of the code. (Some are explained earlier so there's no need to reiterate):

• session_start() - Starts the session. This is usually done on authenticated pages. The

reason why we used this is because this is required for the $_SESSION[''].

• mysql_num_rows() - This returns an integer. This counts all the rows depending on the

query.

• $_SESSION['name'] - Serves as the session name for the entire session. This is relatively

similar to public variables in object-oriented programming. We will be using this for

validating whether the user is authenticated or not.

Now try to test your input with a wrong username and password. It should return the desired

prompt. After testing, try inputting the correct values. It should lead you to home.php.

Note: home.php does not exist yet, so it will produce an error 404.

https://github.com/xtianxchan/MyFirstWebsite/blob/master/checklogin.php

6) Setting Up the Home Page for Logged-in

Users and Logging-Out

Now that were authenticated, let now create our home page (home.php) with this following syntax:

home.php

PHP
Shrink ▲ Copy Code

<html>
 <head>
 <title>My first PHP Website</title>
 </head>
 <?php
 session_start(); //starts the session
 if($_SESSION['user']){ // checks if the user is logged in
 }
 else{
 header("location: index.php"); // redirects if user is not logged in
 }
 $user = $_SESSION['user']; //assigns user value
 ?>
 <body>

 <h2>Home Page</h2>
 <p>Hello <?php Print "$user"?>!</p> <!--Displays user's name-->
 Click here to go logout

 <form action="add.php" method="POST">
 Add more to list: <input type="text" name="details" />

 Public post? <input type="checkbox" name="public[]" value="yes" />

 <input type="submit" value="Add to list"/>
 </form>
 <h2 align="center">My list</h2>
 <table border="1px" width="100%">
 <tr>
 <th>Id</th>
 <th>Details</th>
 <th>Edit</th>
 <th>Delete</th>
 </tr>
 </table>
 </body>
</html>

Here's the explanation to the code:

• session_start() - Basically starts the session. Required for $_SESSION[''].

• header() - redirects the user.

Try refreshing your browser and it should look like this:

Now that we have our home, let's try creating our logout.php and test if the user's session is off.

What we would do is that if the user is logged-out, the user shouldn't access home.php. So here's the

simple syntax to logout.php:

logout.php

PHP
Copy Code

<?php
 session_start();
 session_destroy();
 header("location:index.php");
?>

The syntax is simple. session_destroy() simply removes all session's meaning, the value

of $_SESSION[''] will be removed and header() will simply redirect it to the home page.

7) Testing Page Security

Now try refreshing home.php and click on logout. Now try clicking on the back button of your

browser and see what happens:

As you can see, it doesn't direct you to home.php because you are logged-out. Now for the second

test, try manually inputting the address localhost/MyFirstWebsite/home.php. The same case should

also happen. Since were logged-out, even a manual input of the address doesn't access an

authorized page. What we have done is a simple security mechanism wherein we redirect back

unauthorized users into a public page.

Now try logging in again and let's go back to home.php.

8) Adding Data to the List - User Access Only

In our next step, let's create the adding of items to the list. As you will notice from the form, it is

written as <form action="add.php" method="POST">, meaning our http post request goes

to add.php and with that, we create our add.php with the following syntax:

PHP
Copy Code

<?php
 session_start();
 if($_SESSION['user']){
 }
 else{
 header("location:index.php");
 }

 $details = mysql_real_escape_string($_POST['details']);
 $time = strftime("%X"); //time
 $date = strftime("%B %d, %Y"); //date

 Print "$time - $date - $details";
?>

Take note that this ain't our official add.php syntax yet, I'm just going to demonstrate the time and

date syntax and getting your input.

Now go back to your home.php and try to add an item, then click on "Add to list".

This should be the following output on add.php:

As you can see, we have our current time, date, and your input. Here's the explanation to the code:

• strftime() - gets the time based on what format your placed

• %X - current system time

• %B - current system month

• %d - current system day

• %Y - current system year

Now let's modify our add.php and add the following data into the database together with the data

from the checkbox.

add.php

PHP
Shrink ▲ Copy Code

<?php
 session_start();
 if($_SESSION['user']){
 }
 else{
 header("location:index.php");
 }

 if($_SERVER['REQUEST_METHOD'] == "POST")
 {
 $details = mysql_real_escape_string($_POST['details']);
 $time = strftime("%X"); //time
 $date = strftime("%B %d, %Y"); //date
 $decision = "no";

 mysql_connect("localhost","root","") or die(mysql_error()); //Connect to
server
 mysql_select_db("first_db") or die("Cannot connect to database"); //Connect to
database
 foreach($_POST['public'] in $each_check) //gets the
data from
 //the
checkbox
 {
 if($each_check != null){ //checks if checkbox is checked
 $decision = "yes"; // sets the value
 }
 }

 mysql_query("INSERT INTO list(details, date_posted, time_posted, public) _
 VALUES ('$details','$date','$time','$decision')"); //SQL query

 header("location:home.php");
 }
 else
 {
 header("location:home.php"); //redirects back to home
 }
?>

Click here for the complete add.php code

Here's a little explanation:

• foreach() - gets the value of the checkbox. As you will notice, the checkbox format in the

form is name="checkbox[]". To get data from checkbox, it has to be instantiated as an array.

Doing so would make it possible to get data from multiple checkboxes.

Now try entering some data and click "Add to list". In my case, I'll just use finish again. Let's go to

our phpmyadmin and let's see if the data has been added. Here's the result of my case:

localhost/phpmyadmin

9) Displaying Data in the Home Page

Now that we have seen that the data has been successfully added, let's now display the data in our

home page. Let's modify our home.php and let's add some columns for the date:

home.php

https://github.com/xtianxchan/MyFirstWebsite/blob/master/add.php

PHP
Shrink ▲ Copy Code

<html>
 <head>
 <title>My first PHP Website</title>
 </head>
 <?php
 session_start(); //starts the session
 if($_SESSION['user']){ // checks if the user is logged in
 }
 else{
 header("location: index.php"); // redirects if user is not logged in
 }
 $user = $_SESSION['user']; //assigns user value
 ?>
 <body>
 <h2>Home Page</h2>
 <p>Hello <?php Print "$user"?>!</p>
 Click here to go logout

 <form action="add.php" method="POST">
 Add more to list: <input type="text" name="details" />

 Public post? <input type="checkbox" name="public[]" value="yes" />

 <input type="submit" value="Add to list"/>
 </form>
 <h2 align="center">My list</h2>
 <table border="1px" width="100%">
 <tr>
 <th>Id</th>

 <th>Details</th>
 <th>Post Time</th>
 <th>Edit Time</th>
 <th>Edit</th>
 <th>Delete</th>
 <th>Public Post</th>
 </tr>
 <?php
 mysql_connect("localhose", "root","") or die(mysql_error());
//Connect to server
 mysql_select_db("first_db") or die("Cannot connect to
database");//connect to

//database
 $query = mysql_query("Select * from list"); // SQL
Query
 while($row = mysql_fetch_array($query))
 {
 Print "<tr>";
 Print '<td align="center">'. $row['id'] . "</td>";
 Print '<td align="center">'. $row['details'] .
"</td>";
 Print '<td align="center">'. $row['date_posted'] .
 " - " . $row['time_posted'] . "</td>";
 Print '<td align="center">'. $row['date_edited'] .
 " - " . $row['time_edited'] ."</td>";
 Print '<td align="center">edit </td>';
 Print '<td align="center">delete </td>';
 Print '<td align="center">'. $row['public'] .
"</td>";
 Print "</tr>";
 }
 ?>
 </table>
 </body>
</html>

The explanation to the added code is quite simple. It just basically displays the data coming from

the while loop. It has been explained earlier in our tutorial so I believe that by this point, you should

have understood the process of getting the data in the query. Going back to the browser, try

refreshing your home.php and see what happens:

It should now display that data. From our CRUD checklist, we have now

accomplished Create and Read. Next is to update (edit) and delete information. If you will notice

we have edit and delete links displayed on the column. I'll add another data to the list named "tuna"

to have another example and this time, it's privacy to no:

10) Editing Data

Let's now try editing our data and to do that we will use a new functionality called "GET". With our

previous methods, we have been using POST as our http request but this time, let's use GET for

editing and deleting records. To start of, let's modify our home.php and add a little code to 2

columns.

home.php

PHP
Shrink ▲ Copy Code

<html>
 <head>
 <title>My first PHP Website</title>
 </head>
 <?php
 session_start(); //starts the session
 if($_SESSION['user']){ // checks if the user is logged in
 }
 else{
 header("location: index.php"); // redirects if user is not logged in
 }
 $user = $_SESSION['user']; //assigns user value
 ?>
 <body>
 <h2>Home Page</h2>
 <p>Hello <?php Print "$user"?>!</p> <!--Displays user's name-->
 Click here to go logout

 <form action="add.php" method="POST">
 Add more to list: <input type="text" name="details" />

 Public post? <input type="checkbox" name="public[]" value="yes" />

 <input type="submit" value="Add to list"/>
 </form>
 <h2 align="center">My list</h2>
 <table border="1px" width="100%">
 <tr>
 <th>Id</th>
 <th>Details</th>
 <th>Post Time</th>
 <th>Edit Time</th>

 <th>Edit</th>
 <th>Delete</th>
 <th>Public Post</th>
 </tr>
 <?php
 mysql_connect("localhost", "root","") or
 die(mysql_error()): //Connect to server
 mysql_select_db("first_db") or
 die("Cannot connect to databse"); //Connect to
database
 $query = mysql_query("Select * from list"); // SQL Query
 while($row = mysql_fetch_array($query))
 {
 Print "<tr>";
 Print '<td align="center">'. $row['id'] . "</td>";
 Print '<td align="center">'. $row['details'] . "</td>";
 Print '<td align="center">'. $row['date_posted'] .
 " - " . $row['time_posted'] . "</td>";
 Print '<td align="center">'. $row['date_edited'] .
 " - " . $row['time_edited'] ."</td>";
 Print '<td align="center"><a href="edit.php?id='.
 $row['id'] .'">edit</td>';
 Print '<td align="center"><a href="delete.php?id='.
 $row['id'] .'">delete</td>';
 Print '<td align="center">'. $row['public'] . '</td>';
 Print "</tr>";
 }
 ?>
 </table>
 </body>
</html>

If you have noticed, we only added URL parameter for the edit and delete links namely id. We will

be using this later to handle thee data. The reason why we use id is because it's a unique identifier.

It is possible for the person to have enter the same data so it's not recommended to use

the details as a mean for manipulation later on.

Try putting your cursor into the edit link and you will see the value of the id on the lower left:

Now that we have that, let's try creating our edit.php and let's try to get the data from there:

edit.php

Lines 1 - 42:

PHP
Shrink ▲ Copy Code

<html>
 <head>
 <title>My first PHP Website</title>
 </head>
 <?php
 session_start(); //starts the session
 if($_SESSION['user']){ // checks if the user is logged in
 }
 else{
 header("location: index.php"); // redirects if user is not logged in
 }
 $user = $_SESSION['user']; //assigns user value
 ?>
 <body>
 <h2>Home Page</h2>
 <p>Hello <?php Print "$user"?>!</p> <!--Display's user name-->
 Click here to go logout

 Return to home page
 <h2 align="center">Currently Selected</h2>
 <table border="1px" width="100%">
 <tr>
 <th>Id</th>
 <th>Details</th>
 <th>Post Time</th>
 <th>Edit Time</th>
 <th>Public Post</th>
 </tr>
 <?php
 if(!empty($def['id']))
 {
 $id = $_GET['id'];
 $_SESSION['id'] = $id;
 $id_exists = true;
 mysql_connect("localhost", "root","")
 or die(mysql_error()): //Connect to
server
 mysql_select_db("first_db")
 or die("Cannot connect to databse"); //Connect to
database
 $query = mysql_query("Select * from list"); // SQL Query
 $count = mysql_num_rows($query);
 if($count > 0)
 {
 while($row = mysql_fetch_array($query))
 {

Some explanations to the code:

• !empty() - a method that checks if the value is not empty. The syntax can be reversed if

you want to check if it's empty by removing the explanation point (!), therefore it's syntax

would be empty().

• $_GET[''] - Used to get the value from the parameter. In our case, we use id as our URL

parameter so the syntax would be $_GET['id'].

• $id_exists - the variable that checks whether the given id exists.

• $_SESSION['id'] - we place the value of id into session to use it on another file.

Lines 42 - 76

PHP
Shrink ▲ Copy Code

 $query = mysql_query("Select * from list"); // SQL Query
 $count = mysql_num_rows($query);
 if($count > 0)
 {
 while($row = mysql_fetch_array($query))
 {
 Print "<tr>";
 Print '<td align="center">' . $row['id']
. "</td>";
 Print '<td align="center">' . $row['details'] .
"</td>";
 Print '<td align="center">' .
$row['date_posted'] .
 " - " . $row['time_posted']."</td>";
 Print '<td align="center">' .
$row['date_edited'] .
 " - " . $row['time_edited']."</td>";
 Print '<td align="center">' .
$row['public'] . "</td>";

 Print "</tr>";
 }
 }
 else
 {
 $id_exists = false;
 }
 }
 ?>
 </table>

 <?php
 if($id_exists)
 {
 Print '
 <form action="edit.php" method="post">
 Enter new detail: <input type="text" name="details"/>

 public post? <input type="checkbox name="public[]" value="yes"/>

 <input type="submit" value="Update List"/>
 </form>
 ';
 }
 else
 {
 Print '<h2 align="center">There is not data to be edited.</h2>';
 }
 ?>
 </body>
</html>

The reason why we are putting the variable $id_exists is because in case the user modifies the

URL parameter into a non-existing number (in our case we only have 2 rows/id's), we can display a

prompt in which the data doesn't exist.

Now try clicking the edit link into the first row and it should display like this:

Let's try modifying the URL parameter by removing ?id=1 and now should result

to localhost/MyFirstWebsite/edit.php and it should result like this:

Now try putting a value that is greater than the id number, in our case, let's try 5 and it should result

like this:

localhost/MyFirstWebsite/edit.php?id=5

Now that we secured our URL parameters, let's now place the edit syntax. Let's go back

to edit.php and add some following code to update the information to the database:

edit.php

PHP
Copy Code

<?php
 if($_SERVER['REQUEST_METHOD'] == "POST")
 {
 mysql_connect("localhost", "root", "") or die (mysql_error()); //Connect to
server
 mysql_select_db("first_db") or die ("Cannot connect to database");//Connect to
database
 $details = mysql_real_escape_string($_POST['details']);
 $public = "no";
 $id = $_SESSION['id'];
 $time = strftime("%X"); //time
 $date = strftime("%B %D, %Y"); //date

 foreach($_POST['public'] as $list)
 {
 if($list != null)
 {
 $public = "yes";
 }
 }
 mysql_query("UPDATE list SET details='$details',
 public='$public', date_edited='$date', time_edited='$time' WHERE id='$id'");
 header("location:home.php");
 }
?>

Click here for the complete edit.php code (Github).

Now try refreshing and go back to the edit page. Let's try a different data. In my case, I'll be using

"Salmon" and change it to non-public:

edit.php?id=1

Go ahead and click Update list and you should be redirected to home.php and see the updated list.

Now, we have a time and date of edit displayed on the Edit Time column. Our privacy has been set

now to non-public and the value has changed into Salmon.

Congratulations! We have now done the edit function!

11) Deleting Data

Looking back to the CRUD, we have now done creating (adding), reading (displaying), and updating

(editing) records. Now for the last part, deleting records. For this part, it's just relatively the same as

what we have done on edit but what differs is just the SQL statement. Instead of using UPDATE, we

will be using the DELETE syntax. In deleting records, we have to prompt people making sure that

they'd really want to delete the record so we will be adding a little JavaScript in home.php. To do

that, let's modify our code and add some in home.php.

home.php

https://github.com/xtianxchan/MyFirstWebsite/blob/master/edit.php

PHP
Copy Code

<script>
 function myFunction(id)
 {
 var r = confirm("Are you sure you want to delete this record?");
 if(r == true)
 {
 window.location.assign("delete.php?id=" + id);
 }
 }
</script>

Click here for the complete home.php code

As you have noticed, we edited the link for the delete. We changed href into "#" and added

and onclick function for JavaScript for the method of myFunction and inside its parameter is the

id of the row. Below the table written is the JavaScript syntax wherein it prompts the user if he/she

wants to delete the record. If the user confirms, the page then directs to delete.php together

embedded with the value of the id. Now let's create delete.php and here's the following syntax.

https://github.com/xtianxchan/MyFirstWebsite/blob/master/home.php

delete.php

PHP
Copy Code

<?php
 session_start(); //starts the session
 if($_SESSION['user']){ //checks if user is logged in
 }
 else {
 header("location:index.php"); //redirects if user is not logged in.
 }

 if($_SERVER['REQUEST_METHOD'] == "GET")
 {
 mysql_connect("localhost", "root", "") or die(mysql_error()); //connect to
server
 mysql_select_db("first_db") or die("cannot connect to database"); //Connect to
database
 $id = $_GET['id'];
 mysql_query("DELETE FROM list WHERE id='$id'");
 header("location:home.php");
 }
?>

Click here for the complete delete.php code.

The code is just simple and the syntax are also the ones that we used before but noticed we have

changed our request method into GET. We are now using the GET request since we have a URL

parameter. Now try refreshing home.php and let's try deleting the first record. This should be the

result:

Prompting

https://github.com/xtianxchan/MyFirstWebsite/blob/master/delete.php

End-result

Congratulations! Now we have now officially completed our CRUD statements!

12) Displaying Public Data

Now for the last part, displaying public data. We will be displaying data that's been set to yes in

our index.php, in which is a page for non-authenticated users. It's very simple. We just have to edit

our index.php and add a some php code and table. Here's our updated index.php:

index.php

Now log-out and see your default page. It should look something like this:

Note: You won't see the data yet since we haven't set any information to public.

Now let's log-in again and this time, let's add some more data. In my case, I've added the following:

• Salad - public

• Corn - non-public

• Pasta - public

• Chicken - public

• Spaghetti - non-public

With a total of 6 data with 3 of each privacy setting:

home.php

Now let's log-out and see our default page (index.php). It should now look like this:

index.php

As you can see, it only display's data that are set to public.

Congratulations! We have finally finished the tutorials for this session!

13) De-briefing and Summary

In the end, you should have the following files:

As I mentioned earlier, I'll be uploading the finished product. Click here.

I also uploaded the SQL file for the database in case you want to use the exact data that I have. To

import the SQL file, you can just simply click on export and select the SQL file but make sure to

create the database first. If you like, I can create a separate blog for that. Just let me know in the

comments section.

Anticipated Questions

Here are the questions that I think you will be asking. I tried to anticipate these to avoid confusions:

• Whenever I register a new user, the same list appear. I was expecting for each different user,

there would be a separate list for them. Did I do something wrong?

That's actually a good question. As you can see, I'm only teaching BASIC CRUD functionalities,

authentication, and security not a membership system. Creating a separate list per user requires a

separate table for each of them. So the logic behind it is for each time after you insert data, you will

insert it in another table and have it relationships to one another. You can use the CREATE syntax for

creating a separate table for the user which goes something like this:

SQL
Copy Code

Create table $username (column1 int auto_increment, column2 varchar(50), etc...)

You can click here for the Create table syntax.

The reason why I didn't do that part is because you are going to have to do a lot of querying and it

would make my code look complicating which can consume a lot of time developing it so it's

https://github.com/xtianxchan/MyFirstWebsite
http://www.w3schools.com/sql/sql_create_table.asp

definitely out of my scope. It would be better if you just try it out yourself and figure out the way.

After all, everything you need is already in this blog.

• Would it be easier to use master pages? Because I've noticed you had to re-write the server

and database connection all over again for each page

Yes, it is easier to use master pages. The reason why I didn't use it is for our readers to easily

understand the logic behind it. Master pages can make it a bit confusing for starters.

• Why not use a framework? I bet that would look neat and easy.

Then again, I mentioned in the title Creating your First PHP Program FROM SCRATCH. It's nice to

start of from nothing that from a "template" so that our reader would know the code by heart.

• I know that this is might be an old way of developing PHP. I've heard that there are new

features released.

I only presented based on my mastery. I've been working with PHP for a long time now and I might

not heard about the new features. If you think the new one makes it look good, then try it out then.

• Why not create a separate file for the CSS and JavaScript?

Simple, I'm only demonstrating you about the functionalities. Were more on the back-end code

rather than the front-end. I really didn't focused on the design. If you ask how to design your code

with the PHP, well it's as easy as styling a regular HTML file.

Well, I guess that concludes everything. Thanks guys! I hope you learned something from this topic.

Just to reiterate, in case you want to learn making your own ASP.NET MVC 5 web application from

scratch, you can check it out right here. Follow me on Twitter and you can tweet out your feedbacks

and comments on either articles.

License

This article, along with any associated source code and files, is licensed under The Code Project Open

License (CPOL)

Courtesy: https://www.codeproject.com/Articles/759094/Step-by-Step-PHP-Tutorials-for-Beginners-

Creating

Modified: 2021.10.05.1.45.PM
Dököll Solutions, Inc.

http://kristianguevara.net/creating-your-asp-net-mvc-5-application-from-scratch-for-beginners-using-entity-framework-6-and-identity-with-crud-functionalities/
https://twitter.com/Kris_Chaaan
http://www.codeproject.com/info/cpol10.aspx
http://www.codeproject.com/info/cpol10.aspx
https://www.codeproject.com/Articles/759094/Step-by-Step-PHP-Tutorials-for-Beginners-Creating
https://www.codeproject.com/Articles/759094/Step-by-Step-PHP-Tutorials-for-Beginners-Creating

